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Abstract. We derive the Feynman rules of the standard model in the axial gauge. After this we prove that
the fields ¢w and ¢z do not correspond to physical particles. As a consequence, these fields cannot appear
as incoming or outgoing lines in Feynman graphs. We then calculate the contribution of these fields in the

case of a particular decay mode of the top quark.

1 Introduction

We consider the electroweak standard model in the axial
gauge, restricting ourselves to leptons for simplicity. We
include Dirac masses for the neutrinos, not just because
these particles appear to have a mass, but mainly to make
it easier to figure out what the Feynman rules for the
quarks are. The reason to consider the standard model in
this gauge is that it can provide a more severe check on
gauge invariance than the more common gauges. In [1] an
example of a gauge dependent quantity was found that in
the R¢-gauge did not depend on the gauge parameter &
but in the axial gauge did depend on the gauge vector n.
Another advantage of this gauge is that no Fadeev—Popov
ghost particles are needed. There are, however, unphys-
ical bosonic particles. Both kinds of unphysical particles
disappear in tree graphs in the unitary gauge, but reap-
pear in loop graphs. Furthermore, the unitary gauge has
no gauge parameter, so the only practical check on the
gauge invariance of a cross section is its high energy be-
havior. The disadvantage of the axial gauge is that one
either has bilinear terms in unphysical bosonic degrees of
freedom and W or Z particles or, if one diagonalizes these,
rather complicated formulae for interaction vertices (and
in addition quite a lot of different interaction vertices). We
choose the option of having diagonalized propagators.

2 The Lagrangian

Many lecture notes and books contain introductions to
the standard model; see, for instance, [3]. Here, we just
quickly recall the terms of the Lagrangian of the unbroken
standard model. After that we turn to the axial gauge.
The electroweak standard model has SU(2) x U(1) as its
gauge group. The gauge field that belongs to SU(2) is
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called A7, with a = 1,2,3. The gauge field that belongs
to U(1) is called B,,. The left-handed fermions are in the
(2, —%) representation and the right-handed ones are in
(1, —1). Furthermore there are right-handed neutrinos in
the trivial representation of the gauge group. This means
that the Lagrangian for the fermions is

Lermion = VL(i) — g2 AT + 591 B)Yr,
+ &R(ia_kglﬁ)wR"‘iu(i&)ww (1)

where 1, stands for the right-handed neutrino field. Note
that the T are 2 x 2-matrices that act on the two com-
ponents of vy,. It looks as if the v, field is not coupled to
anything but that will change if we introduce the field ¢
below. The Lagrangian for the gauge fields is

Lyange = —2(0"B*)(0,B,) + £(9"B,)(0" B,))
— 3(9"A)(0, A2) + § (9" A2) (0" A2)

+ goe® (9" A™) AL AS,

— JBAUAG A AL+ LB A AL A AL (2)

Furthermore there is a complex scalar field ¢ in the (2, %)
representation. This has the Lagrangian

Locatr = (040)1("9) + 102 4°(0,)1T"
— igp A T (9,0)

+ 1AL + LB 9,01)0

2 Bt (9,0)

+ oA Bo 0 + LB — gl

26 (4t )2
- 2o



420

Finally, we can couple the field ¢ to the fermions. The
Lagrangian is called the Yukawa Lagrangian. It is given by

Lyukawa = ga@'(/;g(bwl?{ + gl,@@?ﬁé“ﬂf
thagtfed ™l — bl ;00 eyl (4)

The indices « and (8 enumerate the generations of the
standard model and the matrices g and h contain complex
numbers that can, in principle, be chosen freely. € is the
two-dimensional Levi-Civita tensor. It is not difficult to
see that all these terms transform trivially under the gauge
group. The reason that it is possible to construct an SU(2)
invariant from ¢, and ¢ as well as from v, and ¢ is that the
fundamental representation of SU(2) is pseudo-real. The
reality of representations is, for instance, discussed in [4].

We briefly outline the symmetry breaking using the
axial gauge fixing. The unbroken standard model, as de-
fined by the above Lagrangians, is invariant under local
gauge transformations. The fermion fields and the field ¢
transform according to the representation they are in. The
vector fields transform according to the infinitesimal trans-
formations

8B, = 1 (2,(5)):
dAj = g%(@H(SA“)) + e“b"’(SAb)AfL, (5)

if we parameterize group elements by e 4 and e 4“7,
A and A° are four arbitrary functions of space-time. The
freedom to choose four arbitrary functions of space-time
indicates that there is a large redundancy in the field con-
figurations. In the path integral this redundancy causes
problems, because of integrating over many equivalent field
configurations, and we need to get rid of it. The various
ways of doing this are the various gauges. We choose the
so-called axial gauge. This means that we add to the La-

grangian the quantity
Egaugefﬁxing = _%)\nﬂAﬁAgnV - %)\(’I’L : B)27 (6)

and in the resulting Feynman rules take the limit A — oo.
The various gauges should give the same observable results
(e.g. cross sections) and these should not depend on the
parameters in the gauge choice. In our case they should
not depend on the gauge vector n.

In the standard model, it is assumed that the parameter
12 that appears in the Lagrangian for the scalar field ¢ is
negative. The consequence of this is that the minimum of
the energy of this field is no longer located at the point
¢ = 0, but instead at the sphere ¢¢ = 72/12/)\@ To derive
Feynman rules, we make the substitution

655 () +e (7

with v = 24/—u2/As so that the potential is minimal for
¢ = 0. The different components of the ¢-field get different
roles because of the arbitrary choice of the direction of the
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translation of the ¢-field. The second component of this
complex field is split into two real components according to

¢2=%(H+i¢z)~

After the field translation, the fields A% and B mix in the
bilinear terms. We have

(8)

L 43 B bilinear

— —L(8 A% (9, A3) + 1(91A3) (0¥ A3) + L g2v2 A3 An
— Lk A Asn” — 1(9V B1)(8,B,) + 3(0"B,) (0" B,)

(9)

This part of the Lagrangian can be diagonalized by making
the substitution

+§g%UQBﬂB“ — %)\(n -B)? — %glggngzB”.

Ai — CoS QwAi + sin 0w B,;

B,, — cosbwB,, — sin OwAi, (10)
with cos Ow = g./g1 and sin Oy = ge/g2. ge is by definition
given by g2 = g?93 /(g3 + g3). At this point, we introduce
the masses My and My,. These are given by

gev
My = —

W osin by’
Mg = Ia02 (11)

The field H turns out to have a mass My, while My is the
mass of the fields A2, The field B has become massless,
the mixing term between A and B has disappeared, and
the field A® has gotten a mass Mz = My / cos Oy . At this
point we change the name of the field A2 into Z, and the
components AL'? are taken to be the real and imaginary
parts of the complex vector field W according to

1 *
Ai:\ﬁ(WwLWu)?

1 X
Ai:ﬁ(Wu_W#)'

We still have a mixing term between ¢, and Z. The
bilinear terms in these fields are given by

(12)

EZ(;SZ,bilinear (13)
=—-120"2")(0,2,) + 2(0"Z,)(0" Z,) + 1 M2 Z, z»
—%)\TLHZ“ZVTLV + %(8“¢Z)(8#¢Z) — Mzzﬂaﬂgbz.

This part of the Lagrangian can be diagonalized in mo-
mentum space by substituting

¢z(k) — ¢z(k) + 21M2w~

.2 (14)

It is inadvisable to make a substitution on Z, because of
the presence of the gauge vector n.
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For the fields W and ¢; (i.e., the first component of
the complex ¢-field) we have a situation similar to what
we had for the fields Z and ¢z. These fields still mix. We
have in the Lagrangian the bilinear terms

Lqu,bilinear
= —(Q"W") (0, W) + ("W, ) (9" W) + MG WHW;:
— MW, Wi + (0" ¢1)(0,.67)

HMw W ;0" g7 — iMy WHo" ¢, (15)
The reason that, in the mixing terms, we have two con-
jugated fields or two unconjugated fields is because of the
way that we chose to put the fields A»? into the complex
field W in (12). We chose this way, because it gives the
normal conventions in the couplings to the fermions. These
terms are diagonalized by applying, in momentum space,
the transformation

krW i (—k)
12
For convenience, we rename the field ¢; into ¢j;, and ¢
into ¢y .
After the diagonalization process the quadratic terms

in the Lagrangian for the field Z are, in momentum space,
given by

L2 = —5k*Z(K)"Z(—k), + 3k Z (k) kY Z(—k),

¢1(k) — ¢1(k) + 2Mw (16)

+MZZ(k)" Z (k). (17)

— LM n Z(k) kY Z(— k), — IAnP Z (k) ¥ Z(—F)
2 k2 © v 2 H v

From this the propagator

. Jk k., 2 (k2—M2)/X
A . -1 (gl/u - % + ku’ﬂ;%)
Ve k2 — M% + ie

(18)
can be found. Taking the limit A — oo, the term with
(k* — M%)/ disappears and we see that the numerator is
the same as in the axial gauge for massless particles. In the
rest of this paper this limit is implied. For the W-particle
the same propagator can be found except that My should
be changed into My .

From this propagator we can derive the polarization
sum in the axial gauge. In the theory without interaction
we have a particle creation field configuration

o 3. ik ok
aj(k) = —1/d e T 0o s Z,(x). (19)
The complex conjugate of this is the particle annihilation
field configuration. Because the vector field Z has three
physical degrees of freedom, the j in the above formula
should run from 1 to 3. For s}, we choose two vectors
perpendicular to each other and perpendicular to both &

and n with s7 , = —1. For s3 we pick
-k
st = " ot (20)
My+/(k-n)? — k?n?
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This is correctly normalized as can be checked by verify-
ing that

<a§ (k7 t)a3 (k/7 t/)>

=2¢/|k|2 + M2 (27)*3(k — KOt —t).  (21)

It is possible to add an arbitrary multiple of n* in the
definition of s4, but since the contraction of n* with the
propagator is zero, this does not contribute. The polariza-
tion vectors €; that occur in the Feynman rules are the
contraction of s; with the numerator of the propagator.
We have

n2 v
Ejll«:_ (gl“’_ +kjyku(71/k)2> Sj'

From this it can be found that the polarization sum is
given by

nyky _nﬂk:,,
n-k n-k

(22)

n'k*  ntEY n?

BeV — _ v L N N L
DI e R A (n b

(23)

In practice, only the —g"” term plays a role, because it
is a feature of the axial gauge that if we have a vector
boson (B, W or Z) as an incoming/outgoing particle, the
matrix element should become zero if a polarization vector
is replaced by the momentum of the external particle the
polarization vector belongs to. This is a check on gauge
invariance. Note that it is an error to contract the polar-
ization sum with the numerator of the propagator. In the
axial gauge one should be careful not to confuse the vectors
s* with the vectors e*.

Also the fermions can be diagonalized. This proceeds
in exactly the same way as in more common gauges. The
result is that there are six different fermion masses and
that the coupling to the W boson can change a fermion of
one generation into a fermion of another.

3 Feynman rules

Below we list the Feynman rules of the standard model in
the axial gauge. A few remarks are in order.

(1) For every Feynman rule that involves fermions, there
is another one with all generation labels changed. This
involves the changes e <+ pu, ve < vy, me < m, and
my, <> my,. Furthermore, in subscripts of the neutrino
mixing matrix V the exchange 1 <+ 2 should be carried
out. Also one of the generations involved can be changed
into the third generation (i.e., the 7 fermion). Of Feynman
rules related in this way, only one is shown below.

(2) Particles that have an antiparticle have an arrow on
their lines in a Feynman graph. In this case, momentum
flows in the direction of the arrow. If particles do not have
an arrow on them, momentum flows towards the vertex.
(3) We use the following abbreviations:

Je
sin ew '

Guw =
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_ ge )
9z = sin Oy cos Oy’
p=5(1=1%;
pe=3(14+7°). (24)

(4) If reversing all arrows on a vertex would yield a different
vertex, that vertex is also a vertex of the theory. To find
the vertex factor that belongs to it, the vertex factor of the
original vertex should be complex conjugated, except for
one factor of i, and all momenta that belong to particles
that do not carry an arrow on their line should get a minus
sign. Of a pair of vertices that is related in this way, only one
is shown below. As an example, consider the vertex with
an incoming electron neutrino, an outgoing muon and an
incoming ¢y, that is shown below. The “conjugate vertex
factor” is found by exchanging p, and p; and changing Vng
into Vi2. Another example is the vertex with an incoming
Higgs, an incoming ¢y and an outgoing W (see below).
To obtain the vertex that belongs to an incoming Higgs,
an incoming W and an outgoing ¢y, the only change nec-
essary in the vertex factor is k1 — —kj.

(5) The algebra necessary to find all the vertex factors was
done using the C++ computer algebra library GiNaC [5].
Because other symbolic calculations will be easier to per-
form starting from the Lagrangian calculated here, the
program used can be downloaded at the homepage [2] of
one of the authors.

3.1 Propagators

_i(gvu M+k k#(nk) )

B(k)

k2 +
] (gvu ”vk% + koK, s k)2)
W (k)
k? — M2, + ie
i
fyy () B
Z(k)
k2 — M% + ie
¢z (k) i
— 2
H(k) o
k2 — MI%I + ie
(k) i(f +me)
P —

k2 —m2 + ie

i(f+m,)
k% —m2_ +ie

ve (k)
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3.2 Triple boson couplings without Higgs

ig. [g"%ks R 4 PR — RE)
g 1 KS)

_M5V< k2+ # k2

ki k
—(k"+k")12>}
FTR R

, R s
lgeMW<g“ _(1 2)2)

k3

ge (kY + K5

gy cOS Oy { YO(KY + KY) — g™ (k] — kT)

+ 9" (k1 + k3)

+ M2 sin® 9W< o By + “”k3>

k2 k2

1 2 o o klf klZ/
+§Mz (‘(/ﬁ _kQ)ITfIE

k! kS
— (kY + kY)2L 3
( 1 *7 3) k% k% >

1 k¥ kS
+M?2 (2 — sin? HW) (k5 + ké‘)QS}

k3 k3
1 (kY + k2 kM
o <Sin2 bwg"” — Q(kﬁ;f#)kl
(kb + k5)kY
+ (COS Ow — 2) ]4;7?2’3
igw (K5 + k%) ( cos fw — _
’ ’ 2 cos Oy

1 (kY — k)ky (K + kéf)’f:?)
7gwMW ( -

> K2 P

1 H H

59w (kY +k3)



C. Dams, R. Kleiss: The electroweak standard model in the axial gauge 423

3.3 Triple boson couplings with Higgs

Me
i kY (kY + E5)
- wM 2qMV — 3\ 3
k) ) y
k‘% kg k% <’Yﬂpl + (mvepl - mepr) kz)
3

I gw
ﬁ]&iwv‘ll (ml/epl - mepr)
i M%I
2gw My . ) 5/€§
_igz YUpL+ my, Y ?
3
v )
ig-Mz ( g (k1 — k)75
2
1 m
1 k” 1 k”k gy —Te AP
K .
(ku k”JrMHk,z) iy,
29w
¢z (k3) 5
1 MH lgw ku
2%, —7‘/21 (v“pl — (mup1 — my, pr) ,ﬁ)
3
3i M2 1 Gw
292, = My Vo ()
3.4 Coupling to the Fermions 3.5 Quadruple boson couplings among B, W and ¢w
s 2 v v v
— 92gH 07' ua T uT Vo
W (kg)" Goor e ( g t9 t9g
igey" W (kg ) B(k3)® k” k
+2MW T k2 ké)
19120 29;1,1/ oT guagll‘r o gu‘rgua
1 kY kS vo kKT
*M2 vt ™1 V3 4
W (kp)? W (k)T M <g k? k3 t9 k2 k2
W (k)M W (k3) ks kS k5 k]
e T g

1 o K KY kS K]
—3Mw Hk2 k3 k2 k?]
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ow (k2) W (kg)¥

1.9

ow (k1) W (k3)H 2

2ig2 g

dw (k2) dw (ka) i 9 M}%I

w 2
bu (k1) bwy (kg) 2°% My,

3.6 Quadruple boson couplings with Z,

and without ¢z or H

igeguw cos Ow

W (k)" B(kg)T

20kt wkg)?  + Mz (g‘” L

ow (k2) B(kg)”

igeg-(2 cos? Oy — 1

Z (k)M dw (k3)

—21geM g

i
2912,JMW <

X |:_2g;m' uo_,’_g,uu or+gpa vT

+ g"7 (2 cos 0% —
. 1
1ge g Mw

kl/
+ g7 (1 — 2 cos? Gw)z)
k3

1
+ §M§ sin? Oy

" 1 Kk
sin? Owg k2 k2

i geMW
" 2cos2 Oy

—igZ, [Cos Ow (299" —9"9"—g""g"°)

vk K oKL KT
R EE
kY kg AN

pr 22 3 opo 2 V4
TR Y B

1
+ [ 4cos? Oy —
( W sin? O )

x gh’ —=

2sin? Oy k3

Kl
|:gucr L +g po V2

k3

n 1
sin? Oy

o8
;wki

ki

xg

1
2sin? Ow

kg ki
k3 k:2

M KK K1
L

ky
k2

— 4 cos? 0w>

2 B 1T
e

1
ig? ((2 — 2 cos? Oy sin® HW) gtv

+ MH]]ZZ ]]zg)
s (o i
+w$$+ g2
TR

3, M kS k%)
2

TR R R

el kY
~GeGuwMw (9”02 - g’“’ki)
3

k3

3.7 Quadruple boson couplings with one ¢z and no H
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1

§gegwglw

Ly gw ky ks
M po 3
z ( sin? Oy k3 g k3

Z (ko) W (k)"

¢z (k1) S (k3) MEI kg kZ)

4sin? Oy cos Oy k3 k3

Z(ko)H dw (ka) 1 2MH kl‘*
b7 (k1) iy A My K3 Z(kg)#
H(ky)
L, ( kY kg k3
- M guo' +gp,a +g,u,z/
2 k3 k3 k3
3 kb kY kS
M12{234>
2V H}2 j2 2
3.8 Quadruple boson couplings
with multiple ¢z and no H
1 kb kY
gt — M}%I34>
1V R
i, M% kY H(k2)
170 My &2 k)
¢z (k2) by (ka) i ) M?{
bz (k1) Sy (k3) 4 wMI%V

¢z (k2) Z(kg)H 3 2M12{ ]{;Z

Sg2H 4
670k1) oty 477 Mz ki

W (kg)”

by (k3)

bdw (kq)

by (k3)

1
7gegwglw

14
W;”

P '

»M»—*

i, M3 Ky
1 wMW k2

_ZgwMi‘%V

i
(o b

1, M kY
120, %2

_7gw M2

3., M2

1902 M2,

k

m

2
2

i k
—=GeGuwMw (g”"2

3.9 Quadruple boson couplings with one H

+ gh?

Kl kY
k2 k2

k

k

v
3
2
3

)

3.10 Quadruple boson couplings with multiple H

Kl kY
Mirys k2 k2)
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4 (Un)physical particles

The ¢w and ¢z fields are unphysical. This means that they
cannot be external lines in a Feynman graph. The pole at
k? = 0 that occurs in their propagators is canceled by the
poles in the interaction vertices that the W and Z particles
have. The consequence is that these particles cannot travel
over macroscopic distances. As an example, we show how
this cancellation arrises for one particular case. Consider
the combination

(25)

We do not assume anything about the external lines here,
so that our conclusions also apply if all lines in the above
graphs are internal lines of some bigger graph. For M

we find
. 2
19 Me
2 q? 1

WMy +quny 2
Xguu - q,nq% + q;LQD(qT,LTy
@ — ME +ie
m
q 2
igs, me

1
9 MI%V [pr]l qig [pl]Q :

(26)

Here, we have made the approximation that the neutrinos
are massless and consequently the mixing matrix V' can
be taken diagonal. This is just for brevity and does not
change much in the proof below. The [...]; 2 are used to
distinguish matrices in spinor space for the two different
spin lines. Working out the brackets for the spin lines,
we find

M
. qunvt+quny n?
gy I T
o wri i q% — M%V + ie 2
n 2
. 9 e _n __
igume - an_ Ilgn)®
+42 [pr'y ]1 QQ—M‘%V-i—iE [pl]Q
2 n, n?
1ga,Me an — Wgn? .,
+ 2 [pr]l q2 _ MI%V +1€ [’y pl]Q
2 2
) 2 1— qan
19w me ( »n)2
- 2 [pr]1 27(12- [p1]2
2 q q* — My, +ie
s 22
10w Me
- 7M5V [prh qu [p1]2~ (27)
Using the identity
1 1 1 1 1 1
(28)

qjq2—M§V+ie: M%Vq2—M5V+ieiM§V?’
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we see that in (27) no pole remains at ¢? = 0.
The general property that we need so that this always
works out is that the combination

aEinteraction w 8‘cinteraction
Z/rinteraction 4 , ——ateraction
ow,, (@) oW

8Acintcraction aACintcraction

 SOTACHION AW () Smeraction 29

oow D 0g, >

has no pole at g2 = 0. This property can be checked to

hold. In the same way, it can also be shown that ¢~ is not
a physical particle.

5 Outgoing massive vector bosons

If a massive vector boson is produced in a process, strictly
speaking this cannot be an asymptotic state, and one should
take the decay of this particle into account. However, not
doing so may be a rather accurate approximation. In this
section we consider what the role of the ¢y, field is. We
consider a particular decay mode of the top quark, namely
t — b+ b+ c. We compare the result that can be obtained
from the full tree-level matrix element to the result that we
get if we use the W boson as an on-shell particle and to the
result that we get if we ignore the ¢y field. Notice that the
¢w contribution is itself independent of the gauge vector
n, and might therefore be overlooked. If we consider the
W boson as an on-shell particle we find the decay width

F _ F FW+—>EC
on shell W — L¢—p+W+ .
I'y

(30)

The full tree-level matrix element is given by

We find the following relative errors:

Fon shell W — Fboth graphs
Fon shell W

Iy 60, ) m? — M3,
= O
wMy \mf+mZM3, —2ME S\ M3,
m + 3mi M2, — 6mZ M,
m$ — 3mi M}, + 2M§,

~ 0.016;
Z—‘without dw Fboth graphs
Fon shell W
3 Iw m% +m? mb
©2r My Mgv m? — 3mt2M{}V + 2M§V
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X <3+10g (mc +mb>>
my

~—=2-1075. (32)
In these expressions we restricted ourselves in both nu-
merator and denominator to the lowest non-trivial order
in I'y, mp and m.. What can be learned from this is that
because the ¢y field couples to the fermions proportional
to their mass we expect it not to be important if either
of the fermions the ¢y couples to has a mass that can
be ignored.

6 Conclusions

The electroweak standard model can be considered in the
axial gauge. In this gauge there are no Fadeev—Popov
ghost particles. There are, however, the unphysical bosons
¢w and ¢z. These bosons cannot appear as asymptotic
states. The 1/k?-poles in their propagators cancel against
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the 1/k2-factors in the vertices of the corresponding phys-
ical particles. The coupling of the fermions to the unphys-
ical fields and to the 1/k?-terms in the vertex factors are
proportional to the mass of the fermions. Consequently,
ignoring these masses can be an important simplification,
depending on the amplitude considered.
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