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Abstract. We derive the Feynman rules of the standard model in the axial gauge. After this we prove that
the fields φW and φZ do not correspond to physical particles. As a consequence, these fields cannot appear
as incoming or outgoing lines in Feynman graphs. We then calculate the contribution of these fields in the
case of a particular decay mode of the top quark.

1 Introduction

We consider the electroweak standard model in the axial
gauge, restricting ourselves to leptons for simplicity. We
include Dirac masses for the neutrinos, not just because
these particles appear to have a mass, but mainly to make
it easier to figure out what the Feynman rules for the
quarks are. The reason to consider the standard model in
this gauge is that it can provide a more severe check on
gauge invariance than the more common gauges. In [1] an
example of a gauge dependent quantity was found that in
the Rξ-gauge did not depend on the gauge parameter ξ
but in the axial gauge did depend on the gauge vector n.
Another advantage of this gauge is that no Fadeev–Popov
ghost particles are needed. There are, however, unphys-
ical bosonic particles. Both kinds of unphysical particles
disappear in tree graphs in the unitary gauge, but reap-
pear in loop graphs. Furthermore, the unitary gauge has
no gauge parameter, so the only practical check on the
gauge invariance of a cross section is its high energy be-
havior. The disadvantage of the axial gauge is that one
either has bilinear terms in unphysical bosonic degrees of
freedom and W or Z particles or, if one diagonalizes these,
rather complicated formulae for interaction vertices (and
in addition quite a lot of different interaction vertices). We
choose the option of having diagonalized propagators.

2 The Lagrangian

Many lecture notes and books contain introductions to
the standard model; see, for instance, [3]. Here, we just
quickly recall the terms of the Lagrangian of the unbroken
standard model. After that we turn to the axial gauge.
The electroweak standard model has SU(2) × U(1) as its
gauge group. The gauge field that belongs to SU(2) is
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called Aa
µ, with a = 1, 2, 3. The gauge field that belongs

to U(1) is called Bµ. The left-handed fermions are in the
(2,− 1

2 ) representation and the right-handed ones are in
(1,−1). Furthermore there are right-handed neutrinos in
the trivial representation of the gauge group. This means
that the Lagrangian for the fermions is

Lfermion = ψ̄L(i/∂ − g2 /A
aT a + 1

2g1 /B)ψL

+ ψ̄R(i/∂ + g1 /B)ψR + ψ̄ν(i/∂)ψν , (1)

where ψν stands for the right-handed neutrino field. Note
that the T a are 2 × 2-matrices that act on the two com-
ponents of ψL. It looks as if the ψν field is not coupled to
anything but that will change if we introduce the field φ
below. The Lagrangian for the gauge fields is

Lgauge = − 1
2 (∂νBµ)(∂νBµ) + 1

2 (∂µBµ)(∂νBν)

− 1
2 (∂νAaµ)(∂νA

a
µ) + 1

2 (∂µAa
µ)(∂νAa

ν)

+ g2ε
abc(∂µAaν)Ab

µA
c
ν

− 1
4g

2
2A

aµAa
µA

bνAb
ν + 1

4g
2
2A

aµAb
µA

aνAb
ν . (2)

Furthermore there is a complex scalar field φ in the (2, 1
2 )

representation. This has the Lagrangian

Lscalar = (∂µφ)†(∂µφ) + ig2Aaµ(∂µφ)†T aφ

− ig2Aaµφ†T a(∂µφ)

+ 1
4g

2
2A

a
µA

aµφ†φ+
ig1
2
Bµ(∂µφ

†)φ

− ig1
2
Bµφ†(∂µφ)

+ g1g2A
a
µB

µφ†T aφ+
g2
1

4
B2φ†φ− µ2φ†φ

− λφ

4
(φ†φ)2. (3)
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Finally, we can couple the field φ to the fermions. The
Lagrangian is called the Yukawa Lagrangian. It is given by

LYukawa = gαβψ̄
α
Lφψ

β
R + g†

αβψ̄
α
Rφ

†ψβ
L

+hαβψ̄
α
Lεφ

∗ψβ
ν − h†

αβψ̄
α
ν φ

Tεψβ
L. (4)

The indices α and β enumerate the generations of the
standard model and the matrices g and h contain complex
numbers that can, in principle, be chosen freely. ε is the
two-dimensional Levi-Civita tensor. It is not difficult to
see that all these terms transform trivially under the gauge
group. The reason that it is possible to construct an SU(2)
invariant from ψL and φ as well as from ψ̄L and φ is that the
fundamental representation of SU(2) is pseudo-real. The
reality of representations is, for instance, discussed in [4].

We briefly outline the symmetry breaking using the
axial gauge fixing. The unbroken standard model, as de-
fined by the above Lagrangians, is invariant under local
gauge transformations. The fermion fields and the field φ
transform according to the representation they are in. The
vector fields transform according to the infinitesimal trans-
formations

δBµ = 1
g1

(∂µ(δΛ));

δAa
µ = 1

g2
(∂µ(δΛa)) + εabc(δΛb)Ac

µ, (5)

if we parameterize group elements by e−iΛ and e−iΛaT a

.
Λ and Λa are four arbitrary functions of space-time. The
freedom to choose four arbitrary functions of space-time
indicates that there is a large redundancy in the field con-
figurations. In the path integral this redundancy causes
problems, because of integrating over many equivalent field
configurations, and we need to get rid of it. The various
ways of doing this are the various gauges. We choose the
so-called axial gauge. This means that we add to the La-
grangian the quantity

Lgauge−fixing = − 1
2λn

µAa
µA

a
νn

ν − 1
2λ(n ·B)2, (6)

and in the resulting Feynman rules take the limit λ → ∞.
The various gauges should give the same observable results
(e.g. cross sections) and these should not depend on the
parameters in the gauge choice. In our case they should
not depend on the gauge vector n.

In the standard model, it is assumed that the parameter
µ2 that appears in the Lagrangian for the scalar field φ is
negative. The consequence of this is that the minimum of
the energy of this field is no longer located at the point
φ = 0, but instead at the sphere φ†φ = −2µ2/λφ. To derive
Feynman rules, we make the substitution

φ → 1√
2

(
0
v

)
+ φ, (7)

with v = 2
√−µ2/λφ so that the potential is minimal for

φ = 0. The different components of the φ-field get different
rôles because of the arbitrary choice of the direction of the

translation of the φ-field. The second component of this
complex field is split into two real components according to

φ2 =
1√
2

(H + iφZ) . (8)

After the field translation, the fields A3 and B mix in the
bilinear terms. We have

LA3B,bilinear

= − 1
2 (∂νA3µ)(∂νA

3
µ) + 1

2 (∂µA3
µ)(∂νA3

ν) + 1
8g

2
2v

2A3
µA

3µ

− 1
2λn

µAa
µA

a
νn

ν − 1
2 (∂νBµ)(∂νBµ) + 1

2 (∂µBµ)(∂νBν)

+ 1
8g

2
1v

2BµB
µ − 1

2λ(n ·B)2 − 1
4g1g2v

2A3
µB

µ. (9)

This part of the Lagrangian can be diagonalized by making
the substitution

A3
µ → cos θWA3

µ + sin θWBµ;

Bµ → cos θWBµ − sin θWA3
µ, (10)

with cos θW = ge/g1 and sin θW = ge/g2. ge is by definition
given by g2

e = g2
1g

2
2/(g

2
1 + g2

2). At this point, we introduce
the masses MH and MW . These are given by

MW =
gev

2 sin θW
;

M2
H = 1

2λφv
2. (11)

The fieldH turns out to have a massMH , whileMW is the
mass of the fields A1,2. The field B has become massless,
the mixing term between A3 and B has disappeared, and
the field A3 has gotten a mass MZ = MW / cos θW. At this
point we change the name of the field A3 into Z, and the
components A1,2 are taken to be the real and imaginary
parts of the complex vector field W according to

A1
µ =

1√
2

(
Wµ +W ∗

µ

)
;

A2
µ =

1
i
√

2

(
Wµ −W ∗

µ

)
. (12)

We still have a mixing term between φZ and Z. The
bilinear terms in these fields are given by

LZφZ ,bilinear (13)

= − 1
2 (∂νZµ)(∂νZµ) + 1

2 (∂µZµ)(∂νZν) + 1
2M

2
ZZµZ

µ

− 1
2λn

µZµZνn
ν + 1

2 (∂µφZ)(∂µφZ) −MZZ
µ∂µφZ .

This part of the Lagrangian can be diagonalized in mo-
mentum space by substituting

φZ(k) → φZ(k) + 2iMZ
kµZµ(k)

k2 . (14)

It is inadvisable to make a substitution on Z, because of
the presence of the gauge vector n.
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For the fields W and φ1 (i.e., the first component of
the complex φ-field) we have a situation similar to what
we had for the fields Z and φZ . These fields still mix. We
have in the Lagrangian the bilinear terms

LWφ,bilinear

= −(∂µW ν)(∂µW
∗
ν ) + (∂µWµ)(∂νW ∗

ν ) +M2
WWµW ∗

µ

−λnµWµn
νW ∗

ν + (∂µφ1)(∂µφ
∗
1)

+iMWW ∗
µ∂

µφ∗
1 − iMWWµ∂µφ1. (15)

The reason that, in the mixing terms, we have two con-
jugated fields or two unconjugated fields is because of the
way that we chose to put the fields A1,2 into the complex
field W in (12). We chose this way, because it gives the
normal conventions in the couplings to the fermions. These
terms are diagonalized by applying, in momentum space,
the transformation

φ1(k) → φ1(k) + 2MW

kµW ∗
µ(−k)
k2 . (16)

For convenience, we rename the field φ1 into φ∗
W and φ∗

1
into φW .

After the diagonalization process the quadratic terms
in the Lagrangian for the field Z are, in momentum space,
given by

LZ2 = − 1
2k

2Z(k)µZ(−k)µ + 1
2k

µZ(k)µk
νZ(−k)ν

+ 1
2M

2
ZZ(k)µZ(−k)µ (17)

− 1
2

M2
Z

k2 k
µZ(k)µk

νZ(−k)ν − 1
2λn

µZ(k)µn
νZ(−k)ν .

From this the propagator

∆νµ =
−i

(
gνµ − nνkµ+nµkν

n·k + kνkµ
n2+(k2−M2

Z)/λ
(n·k)2

)
k2 −M2

Z + iε
(18)

can be found. Taking the limit λ → ∞, the term with
(k2 −M2

Z)/λ disappears and we see that the numerator is
the same as in the axial gauge for massless particles. In the
rest of this paper this limit is implied. For the W -particle
the same propagator can be found except that MZ should
be changed into MW .

From this propagator we can derive the polarization
sum in the axial gauge. In the theory without interaction
we have a particle creation field configuration

a∗
j (k) = −i

∫
d3x e−ik·x ↔

∂ 0 s
µ
j Zµ(x). (19)

The complex conjugate of this is the particle annihilation
field configuration. Because the vector field Z has three
physical degrees of freedom, the j in the above formula
should run from 1 to 3. For sµ

1,2 we choose two vectors
perpendicular to each other and perpendicular to both k
and n with s21,2 = −1. For s3 we pick

sµ
3 =

n · k
MZ

√
(k · n)2 − k2n2

kµ. (20)

This is correctly normalized as can be checked by verify-
ing that

〈a∗
3(k, t)a3(k′, t′)〉

= 2
√

|k|2 +M2
Z (2π)3δ3(k − k′)θ(t′ − t). (21)

It is possible to add an arbitrary multiple of nµ in the
definition of sµ

3 , but since the contraction of nµ with the
propagator is zero, this does not contribute. The polariza-
tion vectors εj that occur in the Feynman rules are the
contraction of sj with the numerator of the propagator.
We have

εjµ = −
(
gµν − nνkµ

n · k − nµkν

n · k + kνkµ
n2

(n · k)2
)
sν

j . (22)

From this it can be found that the polarization sum is
given by

∑
j=1,2,3

εµj ε
ν
j = −gµν +

nνkµ

n · k +
nµkν

n · k − kνkµ n2

(n · k)2 . (23)

In practice, only the −gµν term plays a role, because it
is a feature of the axial gauge that if we have a vector
boson (B, W or Z) as an incoming/outgoing particle, the
matrix element should become zero if a polarization vector
is replaced by the momentum of the external particle the
polarization vector belongs to. This is a check on gauge
invariance. Note that it is an error to contract the polar-
ization sum with the numerator of the propagator. In the
axial gauge one should be careful not to confuse the vectors
sµ with the vectors εµ.

Also the fermions can be diagonalized. This proceeds
in exactly the same way as in more common gauges. The
result is that there are six different fermion masses and
that the coupling to the W boson can change a fermion of
one generation into a fermion of another.

3 Feynman rules

Below we list the Feynman rules of the standard model in
the axial gauge. A few remarks are in order.
(1) For every Feynman rule that involves fermions, there
is another one with all generation labels changed. This
involves the changes e ↔ µ, νe ↔ νµ, me ↔ mµ and
mνe ↔ mνµ . Furthermore, in subscripts of the neutrino
mixing matrix V the exchange 1 ↔ 2 should be carried
out. Also one of the generations involved can be changed
into the third generation (i.e., the τ fermion). Of Feynman
rules related in this way, only one is shown below.
(2) Particles that have an antiparticle have an arrow on
their lines in a Feynman graph. In this case, momentum
flows in the direction of the arrow. If particles do not have
an arrow on them, momentum flows towards the vertex.
(3) We use the following abbreviations:

gw =
ge

sin θW
;
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gz =
ge

sin θW cos θW
;

pl = 1
2 (1 − γ5);

pr = 1
2 (1 + γ5). (24)

(4) If reversing all arrows on a vertex would yield a different
vertex, that vertex is also a vertex of the theory. To find
the vertex factor that belongs to it, the vertex factor of the
original vertex should be complex conjugated, except for
one factor of i, and all momenta that belong to particles
that do not carry an arrow on their line should get a minus
sign. Of a pair of vertices that is related in this way, only one
is shown below. As an example, consider the vertex with
an incoming electron neutrino, an outgoing muon and an
incoming φW , that is shown below. The “conjugate vertex
factor” is found by exchanging pr and pl and changing V †

21
into V12. Another example is the vertex with an incoming
Higgs, an incoming φW and an outgoing W (see below).
To obtain the vertex that belongs to an incoming Higgs,
an incoming W and an outgoing φW , the only change nec-
essary in the vertex factor is k1 → −k1.
(5) The algebra necessary to find all the vertex factors was
done using the C++ computer algebra library GiNaC [5].
Because other symbolic calculations will be easier to per-
form starting from the Lagrangian calculated here, the
program used can be downloaded at the homepage [2] of
one of the authors.

3.1 Propagators

−i
(
gνµ − nνkµ+nµkν

n·k + kνkµ
n2

(n·k)2

)
k2 + iε

−i
(
gνµ − nνkµ+nµkν

n·k + kνkµ
n2

(n·k)2

)
k2 −M2

W + iε

i
k2

−i
(
gνµ − nνkµ+nµkν

n·k + kνkµ
n2

(n·k)2

)
k2 −M2

Z + iε

i
k2

i
k2 −M2

H + iε

i(/k +me)
k2 −m2

e + iε

i(/k +mνe
)

k2 −m2
νe

+ iε

3.2 Triple boson couplings without Higgs

ige

[
gνσ(kµ

2 + kµ
3 ) + gµσ(kν

1 − kν
3 )

− gµν(kσ
1 + kσ

2 )

−M2
W

(
gνσ k

µ
1

k2
1

+ gµσ k
ν
2

k2
2

− (kσ
1 + kσ

2 )
kµ
1

k2
1

kν
2

k2
2

)]

igeMW

(
gµν − (kν

1 + kν
2 )kµ

2

k2
2

)

ige(k
µ
1 + kµ

2 )

igw cos θW

[
− gνσ(kµ

2 + kµ
3 ) − gµν(kσ

1 − kσ
2 )

+ gµσ(kν
1 + kν

3 )

+M2
Z sin2 θW

(
gµσ k

ν
2

k2
2

+ gµν k
σ
3

k2
3

)

+
1
2
M2

Z

(
−(kσ

1 − kσ
2 )
kµ
1

k2
1

kν
2

k2
2

− (kν
1 + kν

3 )
kµ
1

k2
1

kσ
3

k2
3

)

+M2
Z

(
1
2

− sin2 θW

)
(kµ

2 + kµ
3 )
kν
2

k2
2

kσ
3

k2
3

]

−igzMW

(
sin2 θWg

µν − 1
2

(kν
1 + kν

2 )kµ
1

k2
1

+
(

cos2 θW − 1
2

)
(kµ

2 + kµ
3 )kν

3

k2
3

)

igw (kµ
2 + kµ

3 )
(

cos θW − 1
2 cos θW

)

1
2
gwMW

(
(kν

2 − kν
1 )kµ

2

k2
2

− (kµ
1 + kµ

3 )kν
3

k2
3

)

1
2
gw (kµ

1 + kµ
2 )
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3.3 Triple boson couplings with Higgs

i
2
gwMW

(
2gµν − kν

3 (kµ
1 + kµ

3 )
k2
3

+
kµ
2 (kν

1 − kν
2 )

k2
2

−M2
H

kµ
2

k2
2

kν
3

k2
3

)

i
2
gw

(
kµ
2 − kµ

1 +
M2

H

k2
3
kµ
3

)

− i
2
gw

M2
H

MW

igzMZ

(
gµν +

1
2
(kν

1 − kν
2 )
kµ
2

k2
2

+
1
2
(kµ

1 − kµ
3 )
kν
3

k2
3

+
1
2
M2

H

kµ
2

k2
2

kν
3

k2
3

)

1
2
gz

(
kµ
1 − kµ

2 +M2
H

kµ
3

k2
3

)

− i
2
gz
M2

H

MZ

−3i
2
gw

M2
H

MW

3.4 Coupling to the Fermions

igeγ
µ

igz

(
1
2
γµpl − γµ sin2 θW +

1
2
me

k2
3
kµ
3 γ

5
)

1
2
gz
me

MZ
γ5

− i
2
gw

me

MW

− igw√
2
V11

(
γµpl + (mνe

pl −mepr)
kµ
3

k2
3

)

i√
2
gw

MW
V11 (mνe

pl −mepr)

− i
2
gz

(
γµpl +mνe

γ5 k
µ
3

k2
3

)

−1
2
gw

mνe

MW
γ5

− i
2
gw

mνe

MW

− igw√
2
V †

21

(
γµpl − (mµpl −mνe

pr)
kµ
3

k2
3

)

− i√
2
gw

MW
V †

21 (mµpl −mνe
pr)

3.5 Quadruple boson couplings among B, W and φW

ig2
e

(
− 2gµνgστ + gµσgντ + gµτgνσ

+2M2
W gστ k

µ
1

k2
1

kν
2

k2
2

)

ig2
w

[
2gµνgστ − gµσgντ − gµτgνσ

+
1
2
M2

W

(
gντ k

µ
1

k2
1

kσ
3

k2
3

+ gνσ k
µ
1

k2
1

kτ
4

k2
4

+ gµτ k
ν
2

k2
2

kσ
3

k2
3

+ gµσ k
ν
2

k2
2

kτ
4

k2
4

)

−1
2
M2

WM2
H

kµ
1

k2
1

kν
2

k2
2

kσ
3

k2
3

kτ
4

k2
4

]
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−2ig2
eMW gνσ k

µ
2

k2
2

i
2
g2

wMW

(
− gνσ k

µ
2

k2
2

− gµσ k
ν
3

k2
3

+M2
H

kµ
2

k2
2

kν
3

k2
3

kσ
4

k2
4

)

− i
2
g2

wM
2
H

kµ
3

k2
3

kν
4

k2
4

2ig2
eg

µν

i
2
g2

w

(
gµν −M2

H

kµ
3

k2
3

kν
4

k2
4

)

i
2
g2

w

M2
H

MW

kµ
4

k2
4

− i
2
g2

w

M2
H

M2
W

3.6 Quadruple boson couplings with Z,
and without φZ or H

igegw cos θW

×
[

− 2gµτgνσ + gµνgστ + gµσgντ

+M2
Z

(
1
2
gστ k

µ
1

k2
1

kν
2

k2
2

− 1
2
gντ k

µ
1

k2
1

kσ
3

k2
3

+ gµτ (2 cos θ2W − 1)
kν
2

k2
2

kσ
3

k2
3

)]

igegzMW

(
1
2
gνσ k

µ
1

k2
1

+ gµσ(1 − 2 cos2 θW)
kν
3

k2
3

)

igegz(2 cos2 θW − 1)gµν

−ig2
w

[
cos2 θW(2gµνgστ−gµσgντ−gµτgνσ)

+
1
2
M2

Z sin2 θW

×
(

1
sin2 θW

gστ k
µ
1

k2
1

kν
2

k2
2

+ gντ k
µ
1

k2
1

kσ
3

k2
3

− gνσ k
µ
1

k2
1

kτ
4

k2
4

+ gµτ k
ν
2

k2
2

kσ
3

k2
3

− gµσ k
ν
2

k2
2

kτ
4

k2
4

+
(

4 cos2 θW − 1
sin2 θW

)

× gµν k
σ
3

k2
3

kτ
4

k2
4

− M2
H

2 sin2 θW

kµ
1

k2
1

kν
2

k2
2

kσ
3

k2
3

kτ
4

k2
4

)]

− i
2
g2

eMW

cos2 θW

[
gνσ k

µ
1

k2
1

+ gµσ k
ν
2

k2
2

+
(

1
sin2 θW

− 4 cos2 θW

)

× gµν k
σ
4

k2
4

+
1

2 sin2 θW
M2

H

kµ
1

k2
1

kν
2

k2
2

kσ
4

k2
4

]

ig2
z

((
1
2

− 2 cos2 θW sin2 θW

)
gµν

+
1
4
M2

H

kµ
1

k2
1

kν
2

k2
2

)

− i
2
g2

zM
2
Z

(
gµν k

σ
3

k2
3

kτ
4

k2
4

+ gµσ k
ν
2

k2
2

kτ
4

k2
4

+ gµτ k
ν
2
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3.7 Quadruple boson couplings with one φZ and no H
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µ
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3.8 Quadruple boson couplings
with multiple φZ and no H
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w
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H
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4
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H
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H
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3.9 Quadruple boson couplings with one H
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3.10 Quadruple boson couplings with multiple H
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4 (Un)physical particles

The φW and φZ fields are unphysical. This means that they
cannot be external lines in a Feynman graph. The pole at
k2 = 0 that occurs in their propagators is canceled by the
poles in the interaction vertices that theW and Z particles
have. The consequence is that these particles cannot travel
over macroscopic distances. As an example, we show how
this cancellation arrises for one particular case. Consider
the combination

M = + . (25)

We do not assume anything about the external lines here,
so that our conclusions also apply if all lines in the above
graphs are internal lines of some bigger graph. For M
we find

M =
ig2

w

2

[
pr

(
γµ − me

q2
qµ

)]
1

×
gµν − qµnν+qνnµ

q·n + qµqν
n2

(q·n)2

q2 −M2
W + iε

×
[(
γν − me

q2
qν

)
pl

]
2

− ig2
w

2
m2

e

M2
W

[pr]1
1
q2

[pl]2 . (26)

Here, we have made the approximation that the neutrinos
are massless and consequently the mixing matrix V can
be taken diagonal. This is just for brevity and does not
change much in the proof below. The [. . .]1,2 are used to
distinguish matrices in spinor space for the two different
spin lines. Working out the brackets for the spin lines,
we find

M

=
ig2

w

2
[prγ

µ]1
gµν − qµnν+qνnµ

q·n + qµqν
n2

(q·n)2

q2 −M2
W + iε

[γνpl]2

+
ig2

wme

2
[prγ

µ]1

nµ

q·n − qµ
n2

(q·n)2

q2 −M2
W + iε

[pl]2

+
ig2

wme

2
[pr]1

nν

q·n − qν
n2

(q·n)2

q2 −M2
W + iε

[γνpl]2

− ig2
w

2
m2

e

q2
[pr]1

1 − q2n2

(q·n)2

q2 −M2
W + iε

[pl]2

− ig2
w

2
m2

e

M2
W

[pr]1
1
q2

[pl]2 . (27)

Using the identity
1
q2

1
q2 −M2

W + iε
=

1
M2

W

1
q2 −M2

W + iε
− 1
M2

W

1
q2
, (28)

we see that in (27) no pole remains at q2 = 0.
The general property that we need so that this always

works out is that the combination

∂Linteraction

∂Wµ
∆W (q)µν

∂Linteraction

∂W ∗
ν

+
∂Linteraction

∂φW
∆φW (q)

∂Linteraction

∂φ∗
W

(29)

has no pole at q2 = 0. This property can be checked to
hold. In the same way, it can also be shown that φZ is not
a physical particle.

5 Outgoing massive vector bosons

If a massive vector boson is produced in a process, strictly
speaking this cannot be an asymptotic state, and one should
take the decay of this particle into account. However, not
doing so may be a rather accurate approximation. In this
section we consider what the rôle of the φW field is. We
consider a particular decay mode of the top quark, namely
t → b+ b̄+ c. We compare the result that can be obtained
from the full tree-level matrix element to the result that we
get if we use theW boson as an on-shell particle and to the
result that we get if we ignore the φW field. Notice that the
φW contribution is itself independent of the gauge vector
n, and might therefore be overlooked. If we consider the
W boson as an on-shell particle we find the decay width

Γon shell W = Γt→b+W+
ΓW+→b̄c

ΓW
. (30)

The full tree-level matrix element is given by

M = + . (31)

We find the following relative errors:

Γon shell W − Γboth graphs

Γon shell W

=
ΓW

πMW

(
6M4

W

m4
t +m2

tM
2
W − 2M4

W

log
(
m2

t −M2
W

M2
W

)

+
m6

t + 3m4
tM

2
W − 6m2

tM
4
W

m6
t − 3m2

tM
4
W + 2M6

W

)

∼ 0.016;

Γwithout φW
− Γboth graphs

Γon shell W

=
3
2π

ΓW

MW

m2
b +m2

c

M2
W

m6
t

m6
t − 3m2

tM
4
W + 2M6

W
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×
(

3 + log
(
mc +mb

mt

))

∼ −2 · 10−5. (32)

In these expressions we restricted ourselves in both nu-
merator and denominator to the lowest non-trivial order
in ΓW , mb and mc. What can be learned from this is that
because the φW field couples to the fermions proportional
to their mass we expect it not to be important if either
of the fermions the φW couples to has a mass that can
be ignored.

6 Conclusions

The electroweak standard model can be considered in the
axial gauge. In this gauge there are no Fadeev–Popov
ghost particles. There are, however, the unphysical bosons
φW and φZ . These bosons cannot appear as asymptotic
states. The 1/k2-poles in their propagators cancel against

the 1/k2-factors in the vertices of the corresponding phys-
ical particles. The coupling of the fermions to the unphys-
ical fields and to the 1/k2-terms in the vertex factors are
proportional to the mass of the fermions. Consequently,
ignoring these masses can be an important simplification,
depending on the amplitude considered.
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